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The kernel-mode debugger of HyperDbg is called “kHyperDbg”. Unlike all the other software debug-
gers like WinDbg and GDB, HyperDbg is not a ring 0 (kernel) debugger. It uses ring -1 for its debugging
purpose. Although using ring -1 (hypervisor) as the base of the debugger has its own benefits, many con-
siderations are required for the implementation. In this article we present the design of HyperDbg Kernel
Debugger.

1 Overview
Considering the fact that HyperDbg is organized to be operational in the hypervisor-level, certain key
factors are to be contemplated. Moreover, as for the essential features, such as the transparency, other
considerations should also be taken into account. The Figure 1 below shows an overview of the HyperDbg
Kernel Debugging (kHyperDbg) mechanism, which will be thoroughly discussed.

Figure 1: The Overview of Kernel Debugging in HyperDbg

2 Background:Non-Maskable Interrupts (NMIs)
HyperDbg extensively uses NMIs to perform its tasks in a multi-core system; thus, it is necessary to
overview the underlying technology and different parts of NMIs in modern processors.
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An (NMI) is a hardware-based interrupt that typically cannot be ignored by the system. NMI is usually
triggered in order to alert for hardware errors. These errors include non-recoverable internal system chipset
errors, system memory corruptions such as parity and ECC errors, and data corruptions on the system and
peripheral buses. Nevertheless, for some reasons, it is possible to mask specific NMIs by employing special
techniques.

Software Programs typically use debugging NMIs to diagnose, analyze, and fuzz codes. In such cases,
an NMI can execute an interrupt handler transferring the control flow to a particular monitor program. In
these circumstances, the developer can monitor the memory and examine the program’s internal state at the
instant of its interruption. This also allows the debugging or diagnosing of computers that appear hung.

On some systems, a computer software could drive an NMI through hardware, and software debugging
interfaces and system reset buttons. In HyperDbg as a hypervisor-level software, the NMI triggering is
extensively used for kernel debugging.

Here we investigate the NMI technology details, and this section is used as a base for future references.
You can skip these parts safely and return back to the explanations whenever these terms are used in the
rest of the article.

2.1 NMI Controller Bits In VMX
The controller bit functionality of the NMI behavior in Intel VT-x can be used for many purposes in VMX
mode.

2.1.1 NMI-Exiting (Pin-Based VM-Execution Controls)

If the NMI-Exiting control bit is set to 0 and an NMI arrives while in VMX non-root mode, the NMI is
delivered to the guest via the guest’s Interrupt Descriptor Table (IDT). If the NMI-Exiting control is 1, an
NMI causes a VM-exit. In other words, if this control bit is set, NMIs cause VM-exits. Otherwise, they are
delivered normally using descriptor 2 of the IDT.

2.1.2 Blocking by NMI (Interruptibility state)

Delivery of a non-maskable interrupt (NMI) blocks subsequent NMIs until the upcoming IRET execution.
Setting this bit indicates that blocking of NMIs is in effect, and clearing this bit does not imply that NMIs
are not blocked. On the other hand, if Virtual NMIs control bit is set to 1, virtual-NMI blocking is enabled.
This does not imply the blocking of normal NMIs.

2.1.3 NMI-window exiting (Primary Proc-Based VM Controls)

As a window-exiting field, NMI-window exiting makes it possible to take advantage of open window or any
possible opportunity to deliver the NMI when the user tends to continue the execution (VMRESUME). As
described by Intel,2 if set, NMI-window exiting control executes VM-exit at the beginning of any instruction
with the condition that no virtual NMI blocking. Hence, whenever the guest is ready to deliver an NMI by
ensuring that NMI blocking is disabled, a VM-exit occurs if this control bit is set.

2.1.4 Virtual NMIs (Pin-Based VM-Execution Controls)

By setting up this control, NMIs are never blocked, and the blocking by NMI bit (bit 3) in the interruptibility-
state field would indicate virtual-NMI blocking.

2.1.5 IRET & NMI Unblocking

The behavior of IRET with regards to NMI blocking is determined by the settings in the NMI-exiting and
virtual NMIs controls:

• If the NMI-exiting VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the
NMI-exiting VM-execution control is 0, the virtual NMIs control must be 0)
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• If the NMI-exiting VM-execution control is 1, IRET does not affect the blocking of NMIs. If, in addition,
the virtual NMIs VM-execution control is 1, the logical processor tracks virtual-NMI blocking.

2.2 Receiving NMIs while other cores are on VMX-root
This mechanism is carried out to resolve the issue with receiving NMIs while the VMX-root mode is already
enabled, e.g., when the user intends to inject NMIs to other cores and those cores are already operating
in VMX-root mode. In order to tackle such a problem, the system is required to create a host IDT in
VMX-root mode (Note that it should set HOST IDTR BASE, and there is no requirement for LIMIT since
the value is fixed at 0xffff for VMX operations). Since the debugging mechanism of the Windows is utilized,
the same IDT with the guest (guest and host IDT is the same) is employed. However, in future versions,
this drawback is supposed to be fixed by using a specified NMI ISR handler in VMX-root mode.

2.3 Watchdog NMIs in Windows
During the implementation of HyperDbg, we realized that Windows creates NMIs probably for watchdog
purposes. This is implied by the observation that even if a kernel code is in a deadlock while the interrupts
are disabled, NMIs still could grant control of the processor as NMIs are non-maskable. In HyperDbg, the
NMIs are used to halt all the other cores (other than the main core that triggered an event). HyperDbg
does not intend to prevent Windows from its normal watchdog activities; so, particular flags are set when
HyperDbg tries to broadcast NMIs. In this context, all the NMIs cause VM-exits, if the flag for NMIs
is previously set. This means that the NMI is related to HyperDbg, and the debugger ignores the NMI
and performs the execution to halt the core. If the NMI is caused by Windows, then HyperDbg re-injects
the NMI back to the core. This way, both Windows and HyperDbg benefit from using NMIs functionality
simultaneously without conflict.

3 Design primitives
• Single-core Execution: In order to make the debugging process precise as well as disrupt-resistant,

HyperDbg is designed in such a way that all the CPU cores are halted and spinning on ring -1
(hypervisor) whenever the debugging procedure is executing. Hence, in the debugging mode, only one
core (current operating core) is listening for new commands from the debugger on a polling mode serial.
The underlying mechanism to realize such a feature will be elaborated in detail.

• Pausing Scenario: HyperDbg supports different pausing scenarios. Upon the request from the user
(for instance, an interruption by pressing CTRL+C), a packet is sent to pause the debuggee. In this
method, debugger process the packet on the user-mode, invoking an IOCTL, executing a VMCALL
which transfers from the kernel-mode to the VMX-root mode and in VMX-root mode, it pauses the
debuggee.

• Operating Modes: In HyperDbg, we operate in three different operation modes. The first and
the primary mode of operation for local and remote debugging is VMI Mode. The second mode is
Debugger Mode, and the third mode is Transparent Mode.

• Event, Actions, and Conditions: To render HyperDbg ’s operations, we define three concepts
of Event, Actions, and Conditions. Almost all of the HyperDbg features are developed as an event.
For instance, hidden hooks are realized as events in HyperDbg. When an event is triggered, corre-
sponding actions will be performed. Also, the event is triggered when the system executes a SYSCALL
instruction or a SYSRET instruction. Generally, each event has a condition and might have zero or
multiple corresponding actions. Together, any arbitrary debugging mechanism could be defined and
executed in HyperDbg.
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3.1 Single Core Kernel Debugging
With the employment of Intel NMI thoroughly described in the previous section, HyperDbg performs on
a single core in order to provide a reliable and robust debugging experience. The details regarding the
implementations and employed techniques are already studied in Section 2.

3.2 Debugger Pausing
Typically, there are two scenarios in which the kernel debugger is paused. A breakpoint is triggered either
by a break request from an event or the script engine. In this context, if the user is in the kernel-mode, a
VMCALL occurs, and a chain of events is handled accordingly. If the user is already in VMX-root mode,
other cores should be somehow notified to prevent a system-level crash.

Operating in VMX-root mode is similar to HIGH IRQL. In VMX-root mode, all the interrupts are masked
because of RFLAGS.IF bit.

3.3 Different operating modes
Here we discuss the operation modes provided by HyperDbg.

3.3.1 VMI Mode

For a typical debugging experience, VMI Mode or Virtual Machine Introspection Mode of HyperDbg should
be used. In both local debugging and remote debugging, VMI Mode features are already enabled. In VMI
mode, the user can use all of the HyperDbg features, except for breaking the debugger and step instructions
in kernel-mode. Nevertheless, user-mode breaks to the debugger and step instruction are functional without
any limitations. Based on HyperDbg actions, users can use scripts and custom codes in both user-mode
and kernel-mode in this mode of debugging. This mode can be used in both local debugging and remote
debugging.

3.3.2 Debugger Mode

If HyperDbg is to be used in order to connect to the kernel and halt the system to step-in and step-
over through the kernel instructions, then the Debugger Mode of operation could be taken into account.
Obviously, Debugger Mode can not be used for local debugging. Here, debugging connectivity should be
carried out with a serial cable or virtual serial device. Note that it is recommended to use VMI Mode when
breaking and halting the system for stepping and instrumenting instructions are not required. This is due
to the TCP connectivity in VMI mode, which is substantially faster than a serial device.

3.3.3 Transparent Mode

Transparent Mode is a concept provided in HyperDbg for hidden debugging. By enabling this mode,
HyperDbg tries to make itself transparent from anti-debugging and anti-hypervisor methods. Thus, Hy-
perDbg conceals itself against the hypervisor’s presence on microarchitectural timing attacks and other
software methods. Note that we do not claim to guarantee 100% transparency, but the proposed methodol-
ogy for transparency in HyperDbg makes it substantially more challenging for the anti-debugging methods
to detect the presence of the debugger. To enable this mode, ’!measure’ and ’!hide’ commands sould be
used by the user. The Transparent Mode can be activated in both VMI Mode and Debugger Mode.

3.4 Events, Actions, Conditions
3.4.1 Events

The term “event” is used to describe the fundamental functionality in HyperDbg. Each time HyperDbg is
executed, a special event is set. For instance, an event is set when a system call is intercepted via HyperDbg.
Users should set up an event to be triggered in the case of a “syscall” execution. As another example, hidden
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hooks are defined by an event on a particular function. Whenever these events are triggered, HyperDbg
performs specific actions, arbitrarily configured by the user for debugging purposes.

In the first release of HyperDbg, the following events in Table 3.4.1 are supported.

!epthook Classic EPT hook
!epthook2 EPT hook with detours hooking

!syscall Hook execution of system-calls
!sysret Hook execution of sysret instruction

!monitor Monitors any access (Read/Write) to a region of memory
!cpuid System-wide CPUID instruction execution detection

!msrread System-wide RDMSR instruction execution detection
!msrwrite System-wide WRMSR instruction execution detection

!tsc System-wide RDTSC/RDTSCP instructions execution detection
!pmc System-wide RDPMC instruction (performance counter) execution detection

!exception Monitors and hooks first 32 entries of Interrupt Descriptor Table (IDT)
!interrupt Monitors and hooks external-interrupts 33 to 256 entries of Interrupt Descriptor Table (IDT)

!dr Detects any reads or write into hardware debug registers
!ioin Monitors and ability to modify I/O ports and IN instruction

!ioout Monitors and ability to modify I/O ports and OUT instruction
!vmcall System-wide VMCALL instruction (hypercalls) execution detection

3.4.2 Actions

HyperDbg provides three types of actions, namely Break, Script, and Custom Codes. Break is the exact
conventional feature used in classic debuggers, where all of the cores are paused, and no instruction is
executed without the debugger’s prior permission (note that this feature is not available in local debugging).
Script is another type of action that helps to view the parameters, registers, and memory content without
breaking into the debugger. It could be used when the user intends to analyze the target. This action
could create logs or run codes in the kernel space and also modify registers or change memory. HyperDbg
’s proprietary Script mode provides much faster debugging actions compared to the exiting debuggers4 by
performing the logging mechanism in the kernel. However, displaying the messages is handled in the user-
mode. Custom Codes gives the ability to run custom assembly codes whenever a special event is triggered;
this option is also very fast and powerful as it lets the user customize the HyperDbg according to the user’s
requirements.

3.4.3 Conditions

By design, each event is triggered only in the case of two scenarios. The first scenario is by setting a particular
condition for the event (conditionally). So each time the event is triggered, and the condition is met, the
specified action is performed.

In the second situation, the event is triggered where no condition is set (unconditionally). Hence, it is
triggered anyhow with no condition check.

4 Communicating and Task Appliance
As an essential part of HyperDbg, communicating with the debugger in a safe manner is carefully considered
in the design. This section will describe how the communication with HyperDbg works. Applying tasks as
another important user interface part is also discussed.

4.1 Sending data over serial
It is impossible to use regular Windows API (i.e., APIs for receiving and sending data over the network)
in a debugger. It is due to the fact that data should be directly received from the device. Also, interrupts
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are disabled in VMX-root mode forcing the system to access data from the remote device in the polling
mode. Moreover, working in HIGH IRQL-like environments requires extra implementation for data transfer
as Windows uses different device stacks in different IRQL levels to transfer data from the network. We leave
this to the future release of HyperDbg.

In the initial version of HyperDbg, serial devices are considered to transfer data due to the simplicity
in design and usage and their polling mode support.

There are four primary serial ports that HyperDbg is able to connect. Following the connection initial-
ization between the device and serial port, the required COM name should be provided to HyperDbg in
order to establish the connection to the target device.

HyperDbg handles all connections from debuggee to debugger only on the VMX-root to prevent/avoid
deadlocks.

However, the connection from the debugger to the debuggee is both in VMX-root mode and VMX non-
root mode. Whenever the debugger tries to halt debuggee, we use the interrupt mode of the serial device.
The debugger sends a pause (CTRL + C) signal to the debuggee. After that, the debuggee receives the
packet and passes it to the user-mode. From user-mode, an IOCTL is invoked, and the debuggee is paused in
VMX-root mode. Now, we are waiting for the commands (packets) from the debugger in the polling mode.

Using interrupt-mode in pausing the debugger has made it possible to avoid unnecessary checks in polling
mode when the debuggee is running.

4.2 Broadcasting tasks to all cores upon debugger continuation
In order to notify all the other cores, HyperDbg employs Non-Maskable Interrupts (NMI)1 to inform all the
cores using XAPIC or X2APIC. Cores are configured to cause VM-exit in the case of NMIs (e.g., PIN-Based
VM-Exec controls are set to 1). Consequently, in this mechanism, all the cores in VMX-root mode will be
spinning and waiting for a new command from the debugger.

Whenever an event is triggered, we check for the actions. If the action is a custom code or is a script,
then HyperDbg executes the action without notifying other processors. If the action is a break action, then
HyperDbg sends NMIs to all the other cores to halt them in the VMX-root mode.

5 Step-in & step-over
Step-in and step-over are two essential parts of each debugger, and HyperDbg is not an exception; however,
the design of the stepping mechanism is different as we are operating in VMX-root mode and our stepping
mechanism is operating system independent. In this section, we present stepping mechanism in HyperDbg
Debugger.

5.1 Stepping Mechanism in HyperDbg
The stepping process is an essential feature in commodity debuggers, often implemented very straightfor-
wardly. It is implemented by a trap flag in the CPU, which permits the operation of a processor in single-step
mode. On Intel processors, the trap flag is carried out as RFLAGS which generates an exception making
the system execute a single instruction and then stop. Hence, following a trap flag in the kernel, the user in
the debugger can read/modify the content of the registers as well as the memory map of the system.

However, the conventional kernel stepping method can not handle a guaranteed stepping procedure due
to the possible interrupts in the system. In the following section, we outline this problem in detail.

5.2 Monitor Trap Flag (MTF)
Monitor Trap Flag or MTF is a feature provided by Intel that works exactly like the trap flag in RFLAGS
which is additionally invisible to the guest. By setting this flag on CPU BASED VM EXEC CONTROL,
following a VMRESUME, the processor is forced to execute a single instruction and then performs a VM-exit.
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5.3 MTFs Disadvantages
Setting a monitor trap flag does not guarantee that the next instruction is the targeted one. In this case, if the
upcoming instruction is a sudden interrupt from the CPU, the next targeted instruction in the debugging
program would not be executed since the interrupt handler instructions are executed first. One way to
address this issue is to set a VM-exit on exceptions (Exception Bitmap) and external-interrupts. However,
this resolution is not optimal as it might cause system inconsistency by blocking interrupts. HyperDbg
presents the i command resolving this issue by an instrumentation stepping process.

5.4 Step-in t Command
In the conventional debuggers such as WinDbg, GDB, etc., the step-in command is implemented by using
trap flag. In this scenario, the occurrence of any interrupts (for instance, a DIRQL interrupt) makes the
processor executes the instructions handled by the interrupt handler and even might (and will) switch to
the other threads. This leads to disrupting the single-step procedure in the debugger. A possible scenario is
where the line-by-line stepping is drastically altered by an interrupt.

xor rdi, rdi

xor rsi, rsi

push rax

mov al, 0x3B

Trap Flag :set

#DB (Exeption Bitmap VM exit)

Interrupt/Exception (all cores continue)

#DB (Exeption Bitmap VM exit)

Trap Flag :set

Trap Flag :set

 possibly
other

Process/Thread
execute

Interrupt handler

IRET / Context-Switch

Trap Flag :set

#DB (Exeption Bitmap VM exit)

Figure 2: The t command Stepping mechanism in HyperDbg

In Figure 2, every instruction is stepped by executing a Debug Breakpoint (#DB) exception which causes
a VM-exit. Also, it is noteworthy that all other cores and processes might be executing their routines during
this stepping mode. This simple stepping mechanism as in commodity debuggers is also implemented in
HyperDbg through t command as shown in Figure 2. Nevertheless, one can manually disable interrupts by
unsetting Interrupt Flag in RFLAGS to ignore all the interrupts triggering toward the system. The imple-
mentation of this technique is known to be trivial using a virtualized-assisted debugger. Hence, it is possible
to mask all external interrupts on the system. However, this raises a severe issue with intercepting/prevent-
ing interrupts where the debugger could easily break the OS semantics. For example, in Windows, queuing
a self-DPC interrupt, where the IRQL is not adjusted, could easily damage the OS normal procedure and
consequently a BSOD.

Owing to this, in addition to t command, HyperDbg presents i command to provide a guaranteed
stepping mechanism in debugging routine which will be discussed later on.

The step-in t command is used for regular step-in process and it is implemented like other debuggers
through RFLAGS ’s trap flag. By setting exception bitmap to intercept #DB, HyperDbg is notified when-
ever the guest finished executing the upcoming instruction. Note that the MTF is not used for this purpose.
The reason for using trap flag instead of MTF is that the context might be changed in debugging process
by using the MTF. For example, it is very probable that the user-mode can be switched to the kernel-mode
(because of clock-interrupt). The main reason is that the MTF handler takes so long that the kernel deter-
mines the quantum has finished when it returns back (VMETNRY).

Additionally, using the trap flag, even if the target thread execution is switched to a new thread, is as-
sured that Windows restores the RFLAGS with the trap flag enabled on the next context-switch. In such a
way, when the debug exception happens, the correct target thread is guaranteed to be selected.
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Note that, like other conventional debuggers, HyperDbg continues the execution in all the cores (not
just one core) after setting the trap flag. In the case of the generation of #DB exception, all the cores
are halted again via NMIs. Consequently, at the next step, all the processes and threads are permitted to
continue, but the target thread would execute only one instruction, and all the cores are halted again.

5.5 Step-over p Command
Step-over mechanism in HyperDbg is very similar to regular step-in. The difference is for the call instruction.
In this incident, the debugger sends the length of the call instruction to the debuggee, and instead of setting
the trap flag, it sets a Hardware Debug Register to the instruction after the call. Therefore, when the
call is finished, the Hardware Debug Register is triggered, and the debugger is notified regarding the next
instruction.

It is also necessary to consider that other threads/cores might trigger the Hardware Debug Register since
all the threads/cores are continued through stepping, and different interrupts are possible to disturb the
targeted instruction stepping. The solution to this problem is to check for the thread/process id to ensure
the validity of the target thread supposed to trigger the hardware debug register. In this case, HyperDbg
ignores the generated #DB from the debug register and re-sets the debug register for the next chance to get
the correct execution context in the target thread. Figure 3 shows the overview of the p command stepping
mechanism in HyperDbg.

In Figure 3, by inspecting a call instruction, a Hardware Breakpoint (HW BP) is triggered for the next
instruction.

5.5.1 Hardware Debug Registers in p Command

js
add
mov

call

0x71
BYTE PTR [bp-0x4374],cl
ah, 0x4

rax ret

add    rax, rdx
HW
BP

Continues

guest

and possibly

other

Process/Thread

Figure 3: The p command Stepping over mechanism in HyperDbg

In order to determine the exact jump over the call instructions, HyperDbg sets a breakpoint via Hard-
ware Debug Register on the instruction following the call command. Hence, the debugger is continued over
the call instruction and is broken when it returns back to the main next instruction in the target program.
It is also essential to set debug register for upcoming instruction in all the cores’ Hardware Debug Registers.
This is due to the fact that the currently executing thread might be context switched by the OS and be
executed in another processor or other cores for the next time-slot. Considering this approach, it is assured
that when the thread is returned from the calling function, the #DB is triggered, notifying HyperDbg
about this event.

5.6 Instrumentation Step-in i Command
Considering the difficulty caused by the scenario in Figure 2, HyperDbg employs MTF to overcome the
disruption by inevitable interrupts. To the best of our knowledge HyperDbg is the first debugger, addressing
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this issue by presenting a guaranteed stepping method. As explained, MTF is a feature that works similar
to RFLAGS but is transparent to the guest. The following listing illustrates the set/unset of MTF in an
execution sequence.

1 /∗ Set the mon i to r t r a p f l a g ∗/
2 v o i d HvSetMonitorTrapFlag (BOOLEAN Set )
3 {
4 uns i gned long CpuBasedVmExecControls = 0 ;
5 // Read the p r e v i o u s f l a g
6 vmx vmread (CPU BASED VM EXEC CONTROL, &CpuBasedVmExecControls ) ;
7 i f ( Set ) {
8 CpuBasedVmExecControls |= CPU BASED MONITOR TRAP FLAG ;
9 }

10 e l s e {
11 CpuBasedVmExecControls &= ˜CPU BASED MONITOR TRAP FLAG ;
12 }
13 // Set the new v a l u e
14 vmx vmwr i te (CPU BASED VM EXEC CONTROL, CpuBasedVmExecControls ) ;
15 }

Listing 1: MTF Set/Unset in an example execution sequence

By executing each instruction, it is ensured that the specific line of code is passed to the CPU. In order to
get the execution after executing an instruction, a VM-exit is triggered by setting an MTF which guarantees
that only one succeeding instruction will be executed in the guest. In order to do so, HyperDbg continues
at only one core and disables interrupts in the same core (ignoring external-interrupts by setting external-
interrupts exiting bit in VMCS) to offer a fine-grained stepping. Figure 4 depicts the general procedure in

xor rdi, rdi

xor rsi, rsi

push rax

mov rdi, rsp

MTF : set
MTF VM exit

MTF : set
MTF VM exit

Interrupts are ignored and
only a single core operates
( No other Process/ Thread

is executed )

MTF : set
MTF VM exit

Figure 4: The i command Instrumentation Stepping Approach in HyperDbg

the i command step-in. Note that all the interrupts are ignored during this mode of stepping.
Using this method allows the user to run instructions from user-mode to kernel-mode and from kernel-

mode to user-mode, which was not possible through previously available debuggers. For instance, whenever
the user-mode executes a SYSCALL instruction, HyperDbg flow lets the debugger follow the instructions
directly into the kernel, executing the next instruction from the kernel-mode SYSCALL handler. Similarly,
if a page-fault occurs in the middle of a user-mode application, the debugger is moved into the kernel-
mode page-fault handler. On the other hand, kernel-mode to user-mode migration is also handled through
HyperDbg i stepping. (e.g., executing a SYSRET or an IRET returns the debugger to user-mode from
kernel-mode.)
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6 Processor/Execution Mode Switch
In this section, we describe the architecture relating to switches between processes, processors, and different
modes of execution in HyperDbg.

6.1 Detecting execution mode changes (kernel-mode to user-mode)
The kernel-mode to user-mode (or the opposite) real-time switch detection could be very useful in debugging
procedures. Detecting changes to the operating mode is performed via the same mechanism used in the i
command in HyperDbg. The correct way is to check the CS register, fetch GDT, and check the Long Mode
flag. However, since the CS for wow64 and native code is set to a constant value across all windows versions,
the CS register check is sufficient for the determination.

6.2 Switching to new processor
HyperDbg uses a straightforward mechanism to switch among cores. Each core has its own spinlock to
wait on VMX-root mode. By unlocking the spinlock related to the new core and setting the spinlock of the
current core, it is possible to enter a waiting state. Consequently, HyperDbg calls the command handler
from the new core, and the new core is responsible for getting commands. Note that HyperDbg is designed
to have a single core to get commands simultaneously.

7 Memory Access in VMX-root mode
One of the challenging parts of designing HyperDbg is safe memory access due to its architectural features.
A safe memory access at the hypervisor-level raises numerous considerations which could not be implemented
by simple Mov instructions. For example, if the debugging user accesses a user-mode memory from the VMX-
root mode (even if the VMX-root mode is more privileged in the design of Intel), it most likely ends up with
a system halt or an exception. Another possible issue might arise when the accessed page is paged-out. This
is due to the fact that paging in is not possible in the VMX-root, which leads to a system halt if an already
paged-out entity is accessed.

Addressing these considerations accompanied by other restrictions in the kernel level, targeted by Hy-
perDbg, complicates the memory access architecture. This section presents our approaches for a secure and
efficient memory access in HyperDbg.

7.1 Discovering page-table entries
The conventional method to detect whether a page is valid or not is to find the corresponding page table
to the virtual address. If a valid page-table entry for the target address is found, then the address is valid.
It is also necessary to double-check the page table entry’s present bit to ensure that the target page is not
paged-out and is safe to access.

The method described above is perfectly implementable and functional. However, this approach is not
the best option if it’s used in the user-mode, which requires invoking an IOCTL to check for the addresses
each time, traversing throughout all the page tables, which makes the process time-consuming. To overcome
this issue, we propose the use of Intel’s Transnational Synchronization Extension (TSX) in the HyperDbg
to minimize the overhead.

7.2 Using TSX for Page Table Detection
Intel Transactions Synchronization eXtensions (TSX) provides two x86 instruction set extensions, namely
Hardware Lock Elision (HLE) and Restricted Transactional Memory(RTM).

TSX as an essential extension used in many adversarial side-channel attacks365 , gives a powerful and
precise timing mechanism to exploit microarchitectural flows. TSX could be employed to handle exceptions
at the user-level in the case of transaction failure. It means that if the transaction is failed, then no exception
will occur, which means that the execution will not be passed to the kernel and remains in the user-mode.
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By applying the same method in the VMX-root mode, HyperDbg exploits the TSX to check the validity
of the memory address. Via a TSX section, the address is only valid if the transaction is completed without
error. However, in the case where the transaction is aborted, the debugger detects the address is invalid. This
method is substantially faster as the address validity check in the user-mode (not kernel-mode or VMX-root
mode) could be carried out by a couple of instructions.

It is also worthy to note that not all the processors support Intel TSX; thus, HyperDbg initially checks
for the processor support of TSX. If the processor supports TSX, then address validity in the user-mode is
performed by TSX; otherwise, the first method (check page-table entries) is used.

The following listing shows how TSX transactions could be used to detect the validity of the address.
1 XBEGIN $+xxx
2 ; Us ing I n t e l TSX i n o r d e r to s u p p r e s s any
3 ; page− f a u l t i n VMX−r o o t mode
4

5

6 MOV RAX, Dword PTR : [ RCX]
7 ; Access the t a r g e t memory addre s s ,
8 ; i f the a d d r e s s i s i n v a l i d , then
9 ; t r a n s a c t i o n f a i l s ; o t h e rw i s e ,

10 ; the t r a n s a c t i o n i s s u c c e s s f u l
11

12 XEND ; End o f TSX
13

14 ; T r a n s a c t i o n was s u c c e s s f u l
15 MOV RAX, 1
16 JMP Return
17

18 ; T r a n s a c t i o n f a i l e d
19 MOV RAX, 0
20

21 Return :
22 RETN ; Return the r e s u l t

Listing 2: Using Intel TSX to detect address validity

7.3 Injecting #PF to the debuggee
Contingent upon the address is not present; the debugger injects a page-fault to the debuggee in order to
request VMX non-root to bring the page back from the hard disk to the RAM. Injecting page-faults consists
of configuring the cr2 register to the target virtual address, which needs to be available after handling the
page-fault.

Such a procedure is unsuitable for some debugging scenarios since continuing debuggee might lead to
losing the context if the targeted event cannot be triggered another time. Moreover, if the debuggee is in DIS-
PATCH LEVEL IRQL, page-faults would not work as paging is not realizable at IRQL = DISPATCH LEVEL.

Nevertheless, injecting Page Fault exceptions is possible in some useful scenarios. For instance, the
debugger might check whether the SYSCALL or SYSRET instruction is located at GUEST RIP by executing
HyperDbg’s !syscall or !sysret commands. In this scenario, the IRQL level at PASSIVE LEVEL is assured
if the guest tends to execute SYSCALL or SYSRET. Furthermore, if RIP is not incremented in this case, the
guest requires to re-execute the instruction caused #UD. Hence, HyperDbg can safely inject a #PF and
continue the debuggee. Then the debuggee executes the page-fault handler and re-generates the previous
event.

7.4 VMX-root mode Compatible Message Tracing
Sending a message from VMX-root mode to VMX non-root mode is undoubtedly one of the most complex
parts of the hypervisor design. This is mainly due to many limitations in accessing non-paged buffers.
More importantly, most NT functions are not ANY IRQL compatible as they might access the buffers that
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Figure 5: Caption

reside in paged pool memory. HyperDbg utilizes its custom VMX-root mode compatible message tracing
mechanism to send the commands and messages from VMX-root mode to the user-mode application or the
debugger in a safe manner.

7.5 Reading and writing memory
As mentioned earlier, due to the unsafety with regards to direct memory access, HyperDbg is designed
not to access the memory directly. Instead, by reserving a Page Table Entry (PTE), whenever a memory
access is required from VMX-root mode, HyperDbg finds the physical address of the target page and maps
it to the reserved address (which is in the kernel-mode) using its Page Table Entry (PTE). By doing so, the
memory is safe to be accessed. We have utilized the same approach for memory writes as well. Given a
memory address to write, HyperDbg initially ensures that the address is valid. Similar to the read access,
PTE eliminates the need to check whether the target address is writable or read-only since the target page
is accessed through the reserved virtual address, and HyperDbg guarantees to set its writable bit in the
PTE.

7.6 Pre-allocated pools
Despite the fact that most of the HyperDbg’s routines are operating in VMX-root mode, it is not generally
possible to allocate memory in VMX-root mode. Nevertheless, allocating memory in the VMX-root mode is
unavoidable. For this purpose, we propose to use pre-allocated pools. Pre-allocated pools are allocated when
the debuggee is operating in VMX non-root. We choose the driver’s IOCTL handler, which is a safe place in
the VMX non-root mode and operates in PASSIVE LEVEL. In the memory manager routines, HyperDbg
checks whether it has to allocate any pools. Here, new pre-allocated pools are either required to be replaced
with previously allocated pools or be de-allocated for the pools that are not in use anymore.

As an example, HyperDbg maps all the pages in 2 MB granularity in EPT tables. Supposing the user
intends to set a hook for a particular page, a 4 KB granularity is used. Here, to convert 2 MB size to 4 KB
granularity, we employ an extra 4 KB page table to set new entries in VMX-root mode. This is one of the
cases in that pre-allocated pools are taken into account. Pre-allocated pools are extensively used in many
other mechanisms in HyperDbg.

7.7 Unsafe behavior
The terms “safe” and “unsafe” is used extensively with regard to the usage of HyperDbg. By “safe”, we
mean something that works all the time and will not cause a system crash or system halt. The reason for
these considerations is the hindrance to manage codes in VMX-root mode. As HyperDbg gives the ability
to run custom assembly codes in all execution modes, users should avoid doing “unsafe” behavior leading
to system instability. In the VMX-root mode, interrupts are masked (disabled) and paging is disabled. So,
transferring buffer from VMX-root mode to VMX non-root mode requires extra effort, and the user should
be cautious to avoid executing APIs to ensure the system’s safety. Yet HyperDbg provides a safe way to
access the non-paged pool in the user, kernel, and VMX-root mode. Also, it sends the buffer to the user
mode in a safe manner.

7.8 VMX-root mode compatible script-engine
HyperDbg uses a custom-designed script-engine. The script-engine is designed to work on VMX-root mode.
It uses a MASM-Style language, combined with C keywords (if, else, for, etc.).

We designed everything from scratch, like basic operating system spinlock, memory checks, and even
functions like printf and strlen as it’s not possible to access memory directly in the VMX-root mode.
Other script engine solutions are not working in the case of VMX-root mode.
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In the script-engine, LL(1) and LALR(1) parsers are used to reach the best possible performance. The
grammar of the script-engine can be customized.

In the script-engine, all the accesses to the virtual memory are checked to be safe, and accesses to registers
are applied to the dumped registers and those registers that are located on each core’s VMCS.

8 Challenges and Further Considerations
In this section, we discuss important challenges and other miscellaneous considerations in HyperDbg.

8.1 Getting debugging events: #BPs and #DBs
HyperDbg uses the exception bitmap of VMCS to get notified of breakpoints (#BP) and Debug Break-
points (#DB) in order to halt the other cores. HyperDbg is the first debugger capable of being notified
about the debugging event, which means that HyperDbg is notified, even earlier than the operating sys-
tem. Consequently, we design the system not to notify user-mode application or kernel-mode (OS) entities
regarding the debugging events. So, all the breakpoints events are handled by HyperDbg and no other
debuggers will be notified.

8.2 Spinning on spinlocks
Spinning the cores in HyperDbg is considered as a primary technique in its functionalities. We study the
challenges in this context. Suppose a function requires a spinlock (e.g., it is merely a buffer which is to
be accessed) in a single-core processor. The function raises the IRQL to DISPATCH LEVEL. Here, the
Windows Scheduler can not interrupt the function until it releases the spinlock and lowers the IRQL to
PASSIVE LEVEL or APC LEVEL. If during the execution of the function, a VM-exit occurs, the operation
mode is moved into the VMX-root. (It can be interpreted that VM-exit happens similar to a HIGH IRQL
interrupt.)

Now, what if the user requires to access the buffer in the VMX-root mode? Two scenarios are possible:

• The first scenario is to wait on a spinlock that was previously acquired by a thread in the VMX non-root
mode. In such a scenario, a deadlock occurs and spins forever.

• Alternatively, it is also possible to enter the function without looking at the lock (while another thread
enters the function simultaneously). So it results in a corrupted buffer and invalid data. The other
limitation is in Windows. In Windows, cores must not wait on a spinlock when IRQL is higher than
DISPATCH LEVEL. This lies in the fact that Windows raises the IRQL to 2 (DISPATCH LEVEL)
when a spinlock is acquired. In this case, Windows performs the workload, releases the spinlock, and
lowers IRQL back afterward.

Looking at corresponding windows functions such as KeAcquireSpinLock and KeReleaseSpinLock, the IRQL
arguments are given as input. Windows, in its procedure, saves current IRQL to the parameter supplied
by the user in KeAcquireSpinLock. Then it raises the IRQL to DISPATCH LEVEL. After the function is
finished with the shared data, it calls KeReleaseSpinLock and passes the old IRQL parameter to the function.
Finally, it unsets the bit and restores the old IRQL (lowering the IRQL).

Unfortunately, Windows spinlocks employ IRQLs, which do not make sense when VMX-root mode is in
action. This makes it very complicated to use such functions in this mode. Hence, in order to implement
spinlock for HyperDbg functionalities such as multi-core message tracing, we design a custom VMX-root
compatible spinlock.

8.3 Continuation a single core
One of the exclusive features of HyperDbg is to keep execution (continuation) on one core while other cores
are in a halt-state. We used this mechanism in our instrumentation step-in command to guarantee that no
other cores (threads) get the chance to be executed. This mechanism’s fundamental basis is ensuring that
the target core is not interrupted during the debugging.
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There are two approaches in which HyperDbg prevents target cores from being interrupted (e.g., by
clock-interrupt or keyboard interrupts).

• First, we can unset the guest’s RFLAGS.IF bit, so the interrupts are masked.

• Second, we can set the PIN Based External-Interrupt Exiting bit so all of the external interrupts cause
VM-exits; thus, any interrupts could be simply ignored in the VM-exit handler.

The first method is faster and avoids unnecessary VM-exits. However, for several considerations described
in the following, the second method is preferred in HyperDbg.

Notwithstanding the approach used in the first methodology, it is much safer not to change the guest’s
registers. As an example, if a page-fault happens or in the case of a SYSCALL or invalid operation such as
division-by-zero, the execution is directed to the kernel, and guest’s RFLAGS are saved by the processor.
So, extra tasks are needed to locate the user-mode RFLAGS (search in the stack for exceptions and in
R11 Register for SYSCALLs) because the RFLAGS that was previously saved in user-mode is with IF
bit disabled. If this specific task is ignored, RFLAGS are restored without the check for IF bit, every
time the guest continues and performs a context switch. In this case, the core becomes uninterruptible by
unsetting this bit from the hypervisor as the OS cannot get the execution again (e.g., using clock interrupt).
Consequently, after a delayed bug check, Windows realized the target core behaves abnormally and returns
an error. Moreover, changing guest’s RFLAGS is also incompatible with instructions like CLI and STI.
More importantly, considering the side effects, the guest is able to detect the tampering of HyperDbg by
using PUSHF function and check for IF bit in RFLAGS.

All of the investigated issues with regards to RFLAGS changing, along with the fact that using PIN-
Based External-Interrupt Exiting bit is entirely transparent from the kernel-mode and user-mode, lead us
to employ the second method in HyperDbg.

8.4 HyperDbg & Meltdown Mitigation
Meltdown vulnerability6 and its corresponding attacks affect hypervisors drastically. In HyperDbg, the sys-
tem kernel process’s cr3 is used as HOST CR3. Experimentally, if other process’s cr3 is used as HOST CR3,
some of the functions would not be mapped correctly, causing system-halt and crash the entire system. Af-
ter Meltdown’s mitigation (a.k.a. KPTI or KAISER), user-mode cr3 is differed from the kernel-mode cr3
by the usage of a shadow-like memory layout. Consequently, it is no longer possible to use GUEST CR3
to access guest virtual memory. In this context, if we change the current cr3 register (which is loaded
with HOST CR3 ) to the GUEST CR3 (which is the target process’s cr3 ), system would crash. This is
attributed to the fact that GUEST CR3 does not contain the HyperDbg ’s routines which are mapped into
the kernel-side of the debuggee if the VM-exit is caused by a user-mode instruction.

To solve these problems, we utilize Windows’s EPROCESS structure to find the target process’s kernel
cr3. In Windows, there is no function to export either user-mode or kernel-mode cr3. However, kernel-
mode cr3 is known to be at the static location from the top of EPROCESS in all of the recent versions of
Windows, which is exploited here.

In order to read or access the debuggee’s memory, HyperDbg changes the current cr3 to the target
process’s kernel cr3. Then it accesses those memory locations and finally restores the HOST CR3 again.

We successfully tested the approach for both KPTI-enabled and disabled machines.

8.5 Future Improvements
8.5.1 Events in the VMX-root mode

In the current versions of HyperDbg, some of the commands (especially events) cannot be applied immedi-
ately in Debugger Mode. Storing events in the memory consist of multiple memory allocations with dynamic
sizes. In HyperDbg we use pre-allocated memory to address this problem. However, for dynamic sizes, we
prefer not to allocate a huge page with only a portion used for the event. As a result, applying events directly
from VMX-root mode is impossible. Also, other functions are used to sanitize the parameters for events
that cannot be used in VMX-root mode as those functions are not ANY IRQL compatible. This means that
commands go through the routines from user-mode to kernel-mode and then VMX-root mode. Thus, the
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debuggee is continued for some time, and then the debuggee is halted again. It is clear that the user would
lose the current context (registers and memory), and the target process (which is under debugging) will get
the chance to continue its normal execution. It is important to note that whenever the user creates an event,
HyperDbg continues the debuggee. In this incident, all the other running events (active events) are ignored
until the current event is successfully applied. Hence, HyperDbg might ignore some of the events during
this process.

This issue should be considered by the user when the events are triggered. We plan to improve the
structural design of the events in HyperDbg for the upcoming updates to overcome these difficulties.

8.5.2 HyperDbg over Linux OS

HyperDbg’s nature is OS-independent as it is implemented on top of the hypervisor and very near to the
hardware system. Almost all of the features proposed by HyperDbg are armed with hardware technologies.
So, the similar implantation presented here for Microsoft Windows can also be utilized for Linux. However,
minor detailed modifications are to be contemplated. As the future works, we plan to implement a compatible
HyperDbg for Linux systems.
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