
HyperDbg Debugger

A debugger designed for analyzing, fuzzing and reversing

version 0.1.0.0

VM-exit Transparency in HyperDbg

Website
https://hyperdbg.org

Research
https://research.hyperdbg.org

July 25, 2022

https://hyperdbg.org
https://research.hyperdbg.org


HyperDbg Progress: Transparency

In this short article we describe the progress on developing the transparency feature of the Hyper-
Dbg. We have developed a statistical-based mitigation for HyperDbg to be immunized against timing
side-channel attacks targeting sub-OS intercepting entities.

1 Timing Measurement to Detect HyperDbg

The existence of a third party sub-ring 0 programs and debuggers are often detected by a set of timing
measurement instructions in the OS, forcing a vm-exit procedure to detect any abnormality.

1.1 VM-exit

Generally VM-exits are transitions from VMX non-root operation to VMX-root operation. Virtual machine
control structure (VMCS) is a data structure in memory that exists exactly once per VM (or more precisely,
one per each logical CPU) while the VMM manages it. With every change in the execution context between
different VMs, the VMCS is restored for the current VM, defining the state of the VM’s virtual processor
and VMM control Guest software using VMCS. The VMCS consists of six logical groups.

• Guest-state area: Processor state saved into the guest state area on VM-exits and loaded on VM-
entries.

• Host-state area: Processor state loaded from the host state area on VM-exits.

• VM-execution control fields: Fields controlling processor operation in VMX non-root operation.

• VM-exits control fields: Fields that control VM-exits.

• VM-entry control fields: Fields that control VM-entries.

• VM-exits information fields: Read-only fields to receive information on VM exits and describing
the cause and the nature of the VM-exits.

The VM-exits and its corresponding cause are significantly crucial when handling timing measurements
if transparency is considered.

1.2 Time Difference due to VM-exit

In the presence of the HyperDbg, multiple instructions cause unconditional VM-exit, which reveals the
presence of a lower-level inspector in the system. Particularly, detectors employ CPUID between the RDTSC
to measure the elapsed time, as shown in the following listing.

2 rdtscp ; get the current time clock of processor

3 ... ; save the rdtsc results somewhere (e.g registers)

4 cpuid ;Execute a serialization instruction (forcing VM-exit)

5 ...

6 rdtscp ; Compute the core clock timing again in order to see how many

7 ; clocks are spent

Listing 1: The timing measurement code by forcing VM-exit

Moreover, there are other instructions such as GETSEC, INVD, XSETB, INVEPT, ,XSETBV, INVVPID,
INVVPID, HLT, INVLPG, RDPMC I/O IN/OUT ,WBINVD as well as all VMX instructions cause VM-
exits. Also, Exceptions, NMIs, MSRs Read/Write, EPT Violations and Monitor Trap Flags (MTF) would
cause VM-exits too.

July 25, 2022 1 of 7



2 Statistical Analysis of Elapsed Time for VM-exit

In this section, we statistically analyze the POC timing measurements used in commodity detector software
as well as computer anti-cheat programs. Specifically, the basic CPUID along with pair of RDTSCP is used
in our simple test case.

2.1 Setup

We have used a Skylake i7-6820HQ processor to execute our tests under latest Windows 10 with/without
HyperDbg activated. Note that the method should work for all Intel CPUs architectures with different
specifications since the statistical analysis in the transparency function is executed on any system running
HyperDbg, yielding its own specific timing results (which should be verified in practice).

2.2 Modeling in the time in normal condition (Without HyperDbg)

We have executed the code in the Listing 1 10,000 times, and measured the time in normal condition with
HyperDbg deactivated in the system.

Note that the measurement process took under 1 minute in our test-bed.
The initial timing measurement data was not reliable due to the existence of outlier samples. These false

samples are measured due to unreliable execution of some CPU instructions, handling numerous processes
simultaneously in the timing procedure, and interrupts. Based, on the model of the data in accordance
to the Variance, Maximum and Minimum of samples, we have utilized the Grubbs outlier method [3] and
Median Absolute Deviation(MAD)[6]. As could be predicted, the data follows a Gaussian Distribution when
the Probability Distribution Function is plotted as in Figure 1.

100 200 300 400 500 600 700 800 900
Clock-Cycle

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Pr
ob

ab
ilit

y

Sampled-PDF
Guassian Estimation

Figure 1: PDF distribution and sampled data of timing measurement without activated HyperDbg

July 25, 2022 2 of 7



The discrete interval of the bins in order to construct the PDF is set to 100 in our test-case. The sampled
data follow a two-term Gaussian form in Equation 2.

p(x) = a1e
− (x−b1)2

2c21 + a2e
− (x−b2)2

2c22 (1)

With the help of values of a, b, c, a simple fitting algorithm could be used to reveal the Average (µ) and
Variance (σ2) of a single Gaussian Distribution.

These values then are used in a simple Gaussian Random Generator Algorithm such as Marsaglia Polar
Method [5], to generate a timing sample. The usage of this sample will be explained in the methodology.

2.3 Modeling in the time in the presence of HyperDbg

In the presence of HyperDbg, the CPUID instruction will force a VM-exit as discussed, and a chain of
instructions in the procedure will occur. In this scenario, we have evaluated the timing measurements for
the same 10,000 times executing the code in Listing 1. After removing the outlier data based on the similar
description in the previous section, the distribution of the data set is extracted as shown in Figure 2.

5000 6000 7000 8000 9000 10000 11000 12000 13000
Clock-Cycle

0

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y

Sampled-PDF
Guassian Estimation

Figure 2: PDF distribution and sampled data of timing measurement with activated HyperDbg

3 Proposed methods for Transparency

The general approach to hide the presence of the low-level debugger here is to transparent the timing leakage
caused by the operations executed in HyperDbg, breaking the routine of the OS and CPU.

We propose two different methods to make the HyperDbg transparent. The first approach is to change
the CPU time stamps carefully (i.e., IA32 TIME STAMP COUNTER) in the kernel when an analyzer

July 25, 2022 3 of 7



software or a simple user attempts to measure the elapsed time. By a statistical profiling process, VM-exit
timing along with other processes in the measurement procedure could be estimated for each computer in
accordance with the processor model. Then, this estimated time could be used to update the time stamps
to hide the instructions that occurred in the HyperDbg.

The second method presented here, relies on a systematic approach to emulate the timing instructions in
Intel processors. In such approach every time RDTSC and RDTSCP instructions are executed, a VM-exit is
forced and a special transparency function is invoked to hide the timing leakage due to the extra instructions
in the HyperDbg.

Below, we have discussed each of these approaches in detail.

3.1 Changing Timestamps

In this approach, by the use of the statistical methodology described in the previous section, an accurate
timing profiles are constructed and employed in transparency functions. An overview of the approach is
shown in Figure 3.

Figure 3: Transparency of HyperDbg by changing IA32 TIME STAMP COUNTER

Assuming the target time measuring instruction set in Listing 1, according to the Figure 3, in the presence
of HyperDbg, CPUID, will force out a VM-exit. The VM-exit, consist of a entrance and exiting phases
as depicted in the figure. entrance and exiting time intervals represented by δ1 and δ2 respectively, are
measured iteratively in order to derive statistical characteristics. These timing are also follow a Gaussian
Distribution (or two terms Gaussian Dis.). Note that the values of δ1 and δ2 are measured initially before
the hiding process itself. To ensure the validity of these measurement for the HyperDbg, a special function
in the user-mode is executed by the debugger, storing the timing stamps (T0) using Volatile registers (e.g.
EDX, ECX). Moreover, additional hash validation is checked for each time measurement.

After the profiling phase, the hiding process is executed by HyperDbg as shown in the Figure 3. When
an analyzer software is activated to detect any low-level interception, the Entrance Function stores the time
by executing RDTSCP (T1), after VM-exit entrance. Then, any arbitrary functions in HyperDbg are
executed. At the end of the operations in the hypervisor, a Transparency function is called. Here, the IA32
TIME STAMP COUNTER value is replaced with the following value.

Time Stamp = T1 − (GRG(δ1) +GRG(δ2)) −GRG(Norm) (2)

The GRG is the Gaussian Random Generated number by the use of the Marsaglia Polar Method [5] activated
with Standard Deviation (σ) and Mean (µ) values captured in the initial statistical test-cases. GRG(Norm)
represents the Gaussian estimated elapsed clock-cycles for the timing instructions when HyperDbg is not
activated in normal condition.

July 25, 2022 4 of 7



Taking into account, the procedure explained above, anytime a third-party detecting software performs a
timing analysis to detect HyperDbg, the system automatically immune itself by normalizing the timestamp
used to reveal the time.

3.2 Emulating RDTSC/RDTSCP

In this method, the timing instructions(RDTSC and RDTSCP) are entirely emulated by the HyperDbg,
whenever used in a monitoring software, so the analyzer fails to detect any timing abnormality in the system
operation. This is essentially done by a chain of events and a procedure that will be described in detail in
this section.

The overview of the state diagram of emulation process is shown in the Figure 4.

Initialization (Before
Emulation)

Emulation (Transparent
Mode )

!measure
!measure default

Iterative Time
Measurement 

(rdtscp/vmexit/...)

Get Statistical
Parameters (Av,SD)

HyperDbg : OnHyperDbg : Off

!hide

Get Target
PID/Process Name

Force vm-exit
Store Current-Time

(rdtscp)

Get Current
Thread_ID

Return Normal Time
(For Debugger)

vm-exit reason
!=rdtscp/cpuid

Do Not Emulate
Return 

Already Emulated? (2nd rdtscp)

Use ET
Emulate (restore

rax/rdx/rcx)
Return

Reset State
Return

Cur_TID!=Per_TID

Figure 4: State Diagram Process of rdtsc/rdtscp emulation by HyperDbg

According to Figure 4, this procedure requires an initialization procedure where HyperDbg is deacti-
vated on the normal operating system. This initiation procedure comprises a statistical analysis of time
measurement. The analysis is carried out by !measure [2] command design in the HyperDbg. The main
goal here is to derive the Gaussian Parameters of timing intervals for different measurement scenarios that
analyzing software could perform. By iteratively measuring the time interval normally, operating system
required Standard Deviation and Mean values for these scenarios which are captured in accordance with
the unique characteristics of the system in hand. Alternatively one can used !measure default command
for the use in virtual machine. This command uses default parameters that have been stored earlier in the
system. Although this transparency method works for virtual machines, the VM hypervisor performs other
verification methods rather than timing measurement to ensure the integrity to detect the interceptions.

Following the successful measurement of timing instructions, the HyperDbg is activated and ready to be
initiated in the transparent-mode. The process is executed by the command !hide [1]. The user is required
to pass the targeted PID or process name, which HyperDbg is supposed to be transparent to it. This could
also be carried out by handing over a list of analyzer software to HyperDbg. Afterwards, the system is
ready to emulate and hide any RDTSC / RDTSCP instructions.

July 25, 2022 5 of 7



Confining the emulation process to a target PID/process is essential since a global emulation of timing
instructions would most likely disturb the primary functionalities of the system. Our experiments show a
disturbance in Screen driver as well as audio output performance when a global emulation is implemented.

In order to execute HyperDbg functionalities for transparency it is required to enforce a VM-exit any
time timing instructions are called. This enforcement could be activated by setting the 12th bit of Primary
Processor-Based VM Execution Control, a field in the VMCS as described in Intel’s user manual (Figure 5
[4]).

Figure 5: Primary Processor-Based VM Execution Control [4]

In the case of a VM-exit, the program first checks the VM-exit reason. If the reason is not due to a
RDTSC/RDTSCP/CPUID, the previously stored timestamp for the RDTSC at the beginning of the VM-
exit is returned. This is a crucial action since the debugger itself could have halted the system, and many
instructions are executed during this interval. This ensures the transparency of the intentional/unintentional
activities of the debugging process. Moreover, if the system has already emulated a RDTSC as the first timing
instruction, it needs to leave the second instruction unemulated and be executed normally.

If the conditions are met, the final constraint is to check the Thread ID for the measuring application and
verify that the same thread is performing a measurement. In the case of any thread switch, a context switch
has occurred, and every counter and state should be reset as well as all the timing counters. Finally, the
exact reason and timing measurement scenario is classified (whatever it is caused by a CPUID or a simple
RDTSCP/RDTSCP) and using the parameters derived by the !measure command, A Gaussian Random
Number as a normal time interval is generated by a Marsaglia Polar Algorithm [5]. Then the values are
replaced in RAX and RDX in the case of RDTSC and RCX as well in the case of RDTSCP.

The problem with the second method is that there are different methods to detect RDTSCP/RDTSCP
emulation by measuring the elapsed time between two or more RDTSCP/RDTSCP. However, the first
method is immune to these detections because we are not emulating RDTSCP/RDTSCP and the execution
of these commands represents the real system clock. In order to solve this problem, we saved the results
of the first timestamp counter, and in the second RDTSCP/RDTSCP, we added our measurements to the
emulated counter. It is precisely like RDTSC+CPUID+RDTSC method, but in the initial measurements,
we measure the time between RDTSC+RDTSC and use it in our emulation.

4 Results

There are multiple debugger detectors and analyzers, both commercial and open-source, to be tested for the
proposed transparency method here. However, for our initial evaluation, we have tested the implemented
methods on the well-known pafish [7] software.

Not surprisingly, the first method, which includes updating IA32 TIME STAMP COUNTER, interferes
with the system’s primary functions, making the screen flickering during our experiments. Hence, We were
unable to execute our experiments for the first method successfully. We are still working on the method to
resolve the side effects caused by changing the system timestamps.

July 25, 2022 6 of 7



Nevertheless, the second method (emulation) was able to successfully pass pafish analyser with 100%
success rate after executing !measure and handling the !hide command with the process name of pafish.
Figure 6 shows the transparent active HyperDbg in a physical system, where pafish fails to detect any
abnormal timing leakage.

Figure 6: Successful Transparency Functionalities of HyperDbg over pafish

5 Extensions and Improvements

We are improving our scenarios where an analyzer executes more complex time measurements by executing
multiple RDTSCP or executing pre-defined dummy instructions in the timing interval.

Moreover, we are working on the issues regarding the experiments for the first method. Also, The
experiments should be carried out on different analyzing software to showcase the reliability of the proposed
method.

References

[1] !hide (enable transparent-mode). https://docs.hyperdbg.com/commands/extension-commands/hide.

[2] !measure (measuring and providing details for transparent-mode). https://docs.hyperdbg.com/

commands/extension-commands/measure.

[3] Grubbs’s test for outliers. https://en.wikipedia.org/wiki/Grubbs%27s_test_for_outliers.
Accessed: 2020-08-01.

[4] Intel Intel. “and IA-32 architectures software developer’s manual”. In: Volume 3A: System Programming
Guide, Part 1.64 (64), p. 64.

[5] Marsaglia polar method. https://en.wikipedia.org/wiki/Marsaglia_polar_method. Accessed:
2020-08-01.

[6] Median absolute deviation. https://en.wikipedia.org/wiki/Median_absolute_deviation. Ac-
cessed: 2020-08-01.

[7] pafish. https://github.com/a0rtega/pafish. Accessed: 2020-08-13.

July 25, 2022 7 of 7

https://docs.hyperdbg.com/commands/extension-commands/hide
https://docs.hyperdbg.com/commands/extension-commands/measure
https://docs.hyperdbg.com/commands/extension-commands/measure
https://en.wikipedia.org/wiki/Grubbs%27s_test_for_outliers
https://en.wikipedia.org/wiki/Marsaglia_polar_method
https://en.wikipedia.org/wiki/Median_absolute_deviation
https://github.com/a0rtega/pafish

	Timing Measurement to Detect HyperDbg
	VM-exit
	Time Difference due to VM-exit

	Statistical Analysis of Elapsed Time for VM-exit
	Setup
	Modeling in the time in normal condition (Without HyperDbg)
	Modeling in the time in the presence of HyperDbg

	Proposed methods for Transparency
	Changing Timestamps
	Emulating RDTSC/RDTSCP

	Results
	Extensions and Improvements 

